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ABSTRACT

/ 8/

The application of linear analysis in determining a guidance func-
tion is investigated., The differential equations of motion are linearized
about a nominal calculus of variations solution, The result is an explicit
expression for the cutoff radius error, Ar, and cutoff angle error, AP, as
a linear operation on deviations in initial conditions and several non-
linear functions of thrust angle deviations and thrust -acceleration devia-
tions along the trajectory. With this expression available, a suitable
form is selected for a function to determine thrust angle, X. The coef-
ficients of this function are mathematically determined from the explicit
solution obtained for Ar and Ag under the constraint that these values
be as near zero as feasible for deviations in initial conditions and
thrust acceleration whose values are arbitrary within their expected
range of variation,

The results of employing this function to determine X for a number
of examples are shown, These results emphasize the advantage of mathe-
matically imposing the mission criteria in determination of guidance
coefficients as well as illustrate the value of linearization techniques
‘in guidance analysis,
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TECHNICAL MEMORANDUM X-53166
GUIDANCE APPLICATIONS OF LINEAR ANALYSIS
SUMMARY

An explicit solution is obtained to the linearized differential
equations of motion,! To illustrate the usefulness of such a solution
it is used to impose the mission criteria in determining coefficients for
a guidance function, The resulting function was employed in an available
computer program designed to determine guidance function performance.
The results were exceptionally good and serve to emphasize the advantages
of this type of analysis,

INTRODUCTION

To determine a forcing function in such a way that it accomplishes a
given result, it is useful to first determine the effect that this forcing
function and other parameters and forcing functions have on this result,
With this knowledge available, the task is considerably simplified. This
report applies this principle to the problem of guidance. The equations
of motion are linearized about a nominal trajectory. These equations are
solved so that the important cutoff deviations, Ar and A9, are obtained
explicitly as a function of initial conditions, thrust acceleration and
thrust angle, A form is selected for the function which determines the
thrust angle, X. The explicit solution for Ar and A9 is employed to
impose the mission criteria in determining the coefficients of this
function which, as expected, accomplishes well the result for which it
was designed, The method employed to obtain the explicit solution, the
manner in which it was employed to determine the guidance function and the
results obtained from using this guidance function in a number of examples
are presented and discussed in detail,

The explicit solution to the linearized differential equations of
motion was programmed on the IBM 1620 computer by Mr. Quintin Peasley,
Technical and Scientific Staff, Aero-Astrodynamics Laboratory, George C.
Marshall Space Flight Center,

1 A similar analysis was effectively employed in Reference 3, The
accuracy of the solution and the results it produced led directly to
conclusions that would not likely have otherwise been suspected,



CHAPTER I, EXPLICIT SOLUTION

Section 1, Linearized Equations of Motion

The explicit solution desired requires the solution to the linearized
equations which describe the motion of the vehicle., For this analysis,
the motion was assumed to be in a plane and described by the following
differential equations: '

X = £ sin X + ¥ . (1.1.1)
m g

¥ o= £-cos X+ ¥ (1.1.2)

y = a Yg- .1.

The solution to the above set of differential equations is assumed
to be known numerically for a standard set of conditions., The question
concerning the solution under nons tandard conditions is now considered.
Employing no approximations yet, the equations under nonstandard condi-
tions can be written as a function of the standard solution and deviations
from the standard as follows:

"+A§—<£+-A—f->(sinX+AsinX)+ié + AR
m m g g

i
&

m m

; <; + ££> (cos X + Acos X) + Vg + Ayg.

These can be rearranged to form

£ ; Af/m\ £ . . Af .
¢ $ == gi 3 =)~ + = 4+ .
X+ XX sin X + Xg + {1+ / > A sin X + sin X Axg

£ ’ .
¥+ 4y = % cos X + Vg + <} %;ém o A cos X + cos X.%? + Ayg.



Substitution of equations (1.1.1) and (1.1.2) into the above expres-
sions yields the following exact expressions:

Ax + 1+Af/m AsinX+sinX-%-f.

%

. . Af/m Af
NV Ayg+<1+f/m AcosX+cosXm.

At this point, the first approximation is employed to determine

Aﬁg and Ayg as functions of position deviations Ax and Ay.

A&g = h,; & + hs 2y, (1.1.3)
/,\yg =k, x + kg 2y, (1.1.4)
where
X o¥
h., = —£& h. = —&
1 ax > =2 ay
and
oy oy
k. = —& ko = —2
17 x 2y

The next approximations can be extended to include as many terms
as necessary. The three terms included below were found sufficient for
this report,

_ TC
A sin X = g5 €08 X /X - <180> sin X 2' <180> cos X




A cos X = - -§—'Sln X X = <;86> cos X - <i84> sin X 37— + oae,

where AX is given in degrees,

The linearized differential equations to be solved are

“ Af/m 7 LXE
MK =hy x+hyty+(1+ T/ > [180 cos X AX - <;80> sin X 55— 2T
° S AE
X . .
- <rs%> cos XT} s X
L Of/m) £ { - 2
e m\ £ | _ 7 DX
AY = kl /< + k2 AY + f/m>m L 180 sin X X - 1'8'_0 cos X 2|.

3
< >51nxé%<‘}+cos -Am—f-'.

With the following definitions, the system can be expressed in
more convenient matrix notation,

0 0 10°3 0

0 0 0 10-3
A=

h, hg 0 0

k, ks 0 0




A
Hi = T80 m
TU
H3=<1T
H(t) = (H,
—

2
1+ /m AX

AF(t) =
Nf/m a
1+ T/m AX

cos X

-sin X

0
2 0
f/m
2 -sin X
-cos X
— -
0
0
sin X
cos X




In this notation, the differential equations can be written

! XX = AN + HAF, (1.1.5)
" where
_Ax_
Ly
X = .
2%
Y

The terms Ax and Ay are expressed in km, Ax and Ay in m/sec, AX in
degrees, and Af/m in m/sec?,

The time variable deviations required in equation (1,1.5) are
defined as

M = X(t + Atgy) - Xg(t)

&

X(t + Atg) - %g(t)

affm = £ e+ aey) - Zo

3

At:0 = ti = to:

where t; is second stage ignition time on any trajectory,tO is second
stage ignition time on the standard trajectory, and the subscript s
refers to values obtained from the standard trajectory.



Section 2, Explicit Solution to the Differential Equations

The solution to equation (1.1,5) is shown in Reference 1 to be of
the following form:

th

AV S U(typ, to) Mg + f U(tp, t) H(t) AF(t) dt, (1.2.1)

t
[0)

where U(tp, t) is the solution to the differential equation below
evaluated at t, = ty from initial conditions at t.

Uy, ©) = A(Ey) U(ey, ©), UGk, ©) = I, (1.2.2)
1

The solution to equation (1.2.2) is obtained by assuming that the
elements of the A matrix are constant over each of a number of small
intervals., This assumption yields the solution at the end of this small
interval which is then used to provide initial conditions from which the
solution at the end of the next small interval is obtained. Continuing
in this manner, the solution U(t,, t) can be obtained for t = t, and any
of a number of values of t, ty = t = tp, where t, is cutoff time on the
standard trajectory.

Under the assumption just made, the differential equations which
will be solved are

A
(3
A
P

pR(E) = A(E) MX(E) + H(E) AF(E),  t

where




For this system, the solution to equation (1,2,2) can be written as

i
» )
A(E )AL
£ ) = AGdat, }Z [;_§$__J£l_ . (1.2.3)

Ut &y

i=0

This solution appears in Reference 1 and is adapted to general
application to large systems in Reference 2. Truncation error associated
with the series in equation (1.2.3) is sometimes a problem, However,
the A matrix considered in this application has such small elements and
is changing so slowly with time that Aty = 5 sec was found adequate and
only the following terms were included in the series approximation:

A(gk)Atk =
e I+ A(gk) A¢k.
Then
= A(gn)At
U(tn, tn-l) e n
and
_ A(Ek)ﬁﬁk -
uce, tk-l) = U(tn, tk) e , k=n-1, ..., L.

In this manner, U(t,, t,) can be evaluated numerically and U(tp, t)
for any value of t desired. Although the integration indicated in equa-
tion (1.2.1) might require more sophisticated techniques, the functions
encountered in this application are sufficiently smooth that this inte-
gral can be evaluated quite well by a summation, where each element of
the sum consists of the integrand evaluated at the midpoint of an
interval ty.; = t £ ti multiplied by the length of the interval Aty for
values of At as large as forty seconds, For extreme accuracy, however,
Aty was chosen at values on the order of 5 seconds.



Section 3, Extrapolation to Cutoff Time

The procedure just described provides the solution AX at standard
cutoff time tp. The following equation will be used to determine AX,
the deviations in state variables obtained by subtracting their standard
value at t, from their actual value at a different cutoff time, ¢t.:

t -
CAtO

MR, = X+ \]ﬁ X(t + Aty) dt, (1.3.1)

where X(t + At,) is evaluated on the nonstandard trajectory, This can
be written

K(t + at,) = 5(8(1:) + X(t + aty) - ).(S(t)
5((t + At:o) = 5(3 (t) + Af((t).

These terms can be further decomposed:

t
X, (£) = )’(n + f Sis(t) dt.
t
n
AR(E) = AAX(t) + H(t) AF(t).

Subscript s refers to values obtained from the standard trajectory,
The subscript n refers to values at cutoff time, t,, on the standard
trajectory, '

10




The term AX. can be written as
t =At
c A o

tema% t,
DX, = AX+ XA + f dt, f 328 (t) dt + f [AAX + HAF] dt,
t t ot
n n n
where
- At .

At
c n

This can be further simplified, by notation, to the following expression:
(1.3.2)

M =X At + E,
C n

where
t -At t =At
C o tl C o
E =X+ f dt, f iis(t) dt + f [AAX + HAF] dt. (1.3.3)
t t
n

t
n n

The value of At in equation (1.3.2) depends on the cutoff criterion,

Under the assumption of cutoff at a constant velocity, the following

will be used to determine At,

}'{ »

=1 Ao =

NSl S - A

n n
or
AN =Ty AXC = 0, (1.3.4)
where
1 [ [ ]

T, =5 (0 0 x yn). (1.3.5)
11



Equations (1,3.2) and (1.3.4) give the following relationship:

Ty &X_ = Ty X At + T4E = 0,
and
T4E
At = - — . (1.3.6)
Ty X
Substitution of this expression for At into equation (1,3,2) yields
X TiE
AXC = « ———— + E,
Ty X
or
AXC = TOE, (1.3.7)
where
X Ty
TO =1~ — (1.3.8)
T, X
n

and E is defined in equation (1.3.3). This expression for E requires
some assumptions or approximations in order to actually be evaluated.

The following approximations are used:

and
ANK(E) + H(t) = A M + H_ AF
n n n n

12




for

1A
[
A
t

{tn n + At, At>0}
t +At=tst At <0

n = n’

IIA

These approximations essentially keep second order terms in the
expression for E, discarding only terms of third order or higher., The
resulting expression for E with these approximations is

e 2
E=™ +X 2 +A AX_ At +H At AF . (1.3.9)
n n 2 n n n n

Equations (1.3.7), (1.3.8), and (1.3.9) give At and XX, as functions

of MXp. Equation (1.2,1) yields the solution of AX, as a function of
initial conditions, AX,, deviations in thrust acceleration, Af/m, and
deviations in thrust angle, AX, for t5 = t £ t,, The other functions
appearing in these equations are evaluated from data on the standard
trajectory., Thus, with a given standard trajectory, an explicit expres-
sion for cutoff deviations for nonstandard trajectories has been obtained,

Section 4, End Conditions

To meet the mission, certain end conditions are required., The
particular variables for which an explicit solution is to be obtained
depend on the mission. Under the assumption of an orbital mission, Ar
and A9 are the variables of concern., The following approximations can
be used to determine these variables as a function of the vector AX.:

"
<

=0 n
Oro= ==t LY (1.4.1)
n n

A(rc v, cos ec) = A(xc X, + Ve yc).

= . + » + Py + [} .
A(rc vc) cos en + r v, A cos ec Axc x tx Axc Ayc Yy, v v, Ayc

13



Although the following assumption is not necessary, it is conven-
ient at this point to take advantage of the fact that the mission under
consideration is a circular orbit at a fixed radius., Then r. is constant
and A(re V¢) = 0. Then the following approximation is used:

_ T .
A CcOSs eC - 18 S1n en AGC‘

(]

Since sin §, = 1, we have

The following expression is then obtained for Aec.

180 . . . .
Aec -7 o Vrl <Xn AXc + yn Ayc + Xn Axc + yn Ayc)' (1.4.2)

Equations (l.4.1) and (1.4.2) can then be combined into one matrix
equation,

MR = Ts AXC, (1.4.3)
where
R = Arc ) ANy
C?ec XS}
and
[ & y
_n - 0 0
T T
T, = n n (1.4.4)
-180xn -180yn -180xn -180yn
n Vn ™h Vn ™h Vn T Vn

14




Equations (1.2.1), (1.3.,7), (1.3.8), (1.3.9), (1.4.3) and (1.4.4)
give us the means of determining the variables Ar and A6 as a function
of initial condition deviations, AX,, thrust acceleration deviations,

%%(t), and thrust angle deviations, AX(t), (tys t = t,). This expres-

sion can be used to actually evaluate errors of individual trajectories
in the neighborhood of the standard if all the deviations mentioned are
known, It also provides considerable insight into the mechanics of
solving differential equations of motion by showing, term by term, the
effect on mission error of

Af
AXO, m(t), and AX(t)o

In addition, for this particular problem, the explicit representation

provides a means of determining X as a function of AX, and %f(t) so that
/x and A9 are as near zero as this analysis and the assumptions concern-
ing the form of X will allow, Although AX,, %?(t), and AX(t) were the

only parameters considered in this analysis, with little additional effort
other forcing functions or parameters could have been included, For the
present, the concern will remain with the forcing functions and parameters
already considered and an actual application will be demonstrated,

Section 5, Numerical Example

Several calculus of variations solutions were available for an
early SA-6 second stage vehicle, The standard trajectory had the follow=-
ing initial and end point conditions:

Initial Conditions: (1.5.1)
X, = 153.98343 km t, = 146,815 sec
y,. = 6435,8783 km £ _ 8.,78065
o =(1) =
m 1,3751 - ,20888¢ °
kX, = 2818.3294 m/sec
t -t

= 0

%o = 988,35767 m/sec T~ 100 -

15



Final Conditions: (1.5
x = 2326,37 km v = 7792 m/sec
n n
y_ = 6128.51 km r = 6555,200 km
n n
kn = 7285,34 m/sec tn = 620,679 sec
yn = - 2765.50 m/SeC %(tn) = 22.793 m/SeC2
¥ = 19,047 m/sec?
n X = 102,506°
¥, = - 13.59 m/sec?®
g = 90°.
n
%% = ,1001 m/sec3

hJ - ,0655 m/sec®

The gravity components were defined by

where

g=-—=, 8, "~ 9,81 m/sec?, r = 6370 km,

.2)

From this, the following elements of the A matrix are determined.

16




o g rZ

hy = 5B = - 222 11 - 3Ge/r)?] |
l

X g r2 3

ha =557 = moan {Iél}
] g (1.5.3)

oy &0 Yo [3x
S [?zz]

oy g r2
kp = ayg = - 33 ° 1 - 3(Y/r)2]J

The values of x, y, and 1 obtained from the standard trajectory are
listed in Table 1.1. They are listed as a function of t where t desig-
nates time on the standard trajectory, In addition, the quantity Aty is
listed which describes the length of the interval over which the dif-
ferential equations were assumed to be a constant coefficient system,

TABLE 1.1
STANDARD TRAJECTORY DATA

150 .0318 13,18 163.0 6435.6
180 .3318 40 250,4 6461,9
220 .7318 40 374.8 6488, 2
260 1,1318 40 508,6 6504,4
300 1,5318 40 652,7 6510,5
340 1.9318 40 807,8 6506, 2
380 2,3318 T 40 975.1 6491,0
420 2,7318 40 1155,7 6464, 5
460 3.1318 40 1351,0 6426,0
500 3,5318 40 1562,7 6374.5
540 3,9318 40 1793.0 6308,8
580 4,3318 40 2044,7 6227,1
610 4,6318 20,68 2249,9 6153,9.

17



The data in Table 1,1 can be used to evaluate the elements of the
A matrix defined in equations (1.5.3), The results are shown in
Table (1.2) which for convenience have been multiplied by 1000,

TABLE 1.2

ELEMENTS OF A MATRIX

. by e ey kp
150 -1,489 113 L113 2,327
180 -1,465 171 171 2,937
220 -1,436 .251 .251 2,886
260 -1.407 334 L334 2,840
300 -1,378 423 423 2,799
340 -1,348 518 .18 2,761
380 -1,315 .621 .621 2,722
420 -1,275 731 .731 2,682
460 .-1.228 .849 .849 2,633
500 -1.168 977 977 2,576
540 -1.,113 1,079 1,079 2,505
580 -1.001 1,257 1,257 2,415
610 - 912 1,370 1,370 2,327

NOTE: All of the above elements have been multiplied by 1000, To use
in the construction of the A matrix, they must first be multiplied
by 1073,

The matrix U(tp, t) can be determined from the information in
Tables 1,1 and 1,2 for the values of t listed as follows,

Uty £ ) = T +AG) At
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where

| 0 0 1075 0
0 0 0 1073
ACe) = hy(t)  ho(t) 0 o |
ky(€) ko(g) 0 0

Choosing £, = 610 and t,_. = 600, t; = 620,68, then the following matrix

is determined, *
- ™
1 0 .02068 0
0 1 0 .02068
U(tp, 600) =
-,01886 .02833 1 0
.02833 . 04812 0 1

Then U(t,, 560)

U(ty, 600) U(600, 560) where U(600, 560) = I + 40A(580).
Continuing in this manner, U(tp, t) can be determined for a number

of values of t back to and including t = to. The following matrix
U(tp, ty) was obtained from the data in Tables 1.1 and 1,2,

.86115 . 04792 45637 .00905
. 04503 1.29901 .00890 51145
U(tn, to) = (1.5.4)
-.57740 .35385 .88097 .09625
.31006 1,38267 .09284 1.27619

The intermediate matrices U(tp, t) are tabulated in Appendix I.
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The expression for U(tyg, ty.;) is the truncation of a series expan-
sion, If the elements in the A matrix are large, more terms are required.
If they are extremely large, U(ty, Ek_l) must be evaluated by special
methods described in Reference 2, 1In addition, the interval over which
the system is assumed to have a constant A matrix depends on the particular
problem at hand. The numerical example being used as an illustration
assumes a constant coefficient system for intervals of forty seconds.

A more accurate solution was employed to determine the guidance function
in Chapter II. The system was assumed constant for intervals of 5 seconds
or less, and the integration was carried out by summing over five second
intervals, The solution differed generally in the third significant
figure from that obtained from the present example where 40 seconds was
used,

In addition to the matrix U(t,, t,), the solution given by equation
(1.2.1) requires that an integration be performed, The functions in this
example are sufficiently smooth that a very good solution can be obtained
by summing U(tp, ty) H(ty) AF(ty) Atg. If the functions in the integrand
are extremely variable, this technique may not give accurate values for
the integral. Although techniques outlined in Reference 2 overcome this
problem, they are not necessary for this example., With the following
definition, AX;; can be written as a linear sum of deviations in initial
conditions AX, and the vector AF(t) evaluated for several values of t,

ﬁ(tj> = Ut ) H(e)) ac. (1.5.5)
Then,
n
M =U(E, £ ) X+ Z ﬁ(tj) AF(tj). (1.5.6)
j=1

Table 1,3 lists the data taken from the standard trajectory
necessary to evaluate the matrix H(t;) for the values of t; indicated.
In addition, the value of At. is lis%ed which was used to determine
ﬁ(tj) as defined in equation™(1,5,5). Appendix I lists the corresponding
matrices U(tp, t;) which, with the data in Table 1,3, is sufficient to
evaluate the elements of ﬁ(tj) necessary to perform the summation indi-
cated in equation (1.5.6).

20




TABLE 1.3

DATA REQUIRED FOR H(t;) At,

j
t.(sec) A, (sec) X (°) % (m/sec?)
160 33,18 59.255 6.516
200 40 62.460 6.946
240 40 65.745 7.438
280 40 69.119 8.005
320 40 72,590 8.665
360 40 76.168 9,444
400 40 79.861 10.376
440 40 83,676 11,513
480 40 87.620 12,930
520 40 91,693 14.743
560 40 95,896 17,149
600 40,68 100,223 20,493

The above values, together with U(tp, ts) listed in Appendix I,
were used to determine ﬁ(tj) from equation (f.S.S). The elements of
U(t:) are listed in Appendix II, All of the information necessary to
evaiuate Mp 1s available and the necessary coefficients evaluated;

MKg» Ax(tj) and %%(tj) remain explicit,

The last step necessary to obtain an explicit expression for Ar and
Mo is to evaluate the matrices defined in equations (1.3,7), (1,3.9), and
(1.4.3), From the end conditions given in (1.5.2), T;, defined in equa-
tion (1,3,5), is evaluated.

T, = (0 0 .9350 -.3549), (1.5.7)
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Evaluation of the elements in T,, defined by equation (1.4,4),
gives the following result,

.3549 .9349 0 0
T2 = 5
-.008172 .003102 -,002609 -,006875
_ - - -
7.2853 .01905
% = -2.,7655 and X = -.01360 .
n 19.047 1 .1001
:13.596_ | -.0655 |
Equation (1,3.7) provides the relationship,
M =TE,
c o
where
T =1 -~ .
Equation (l.4,3) gives the relationship
MR =T, AX .
Combining these expressions yields
X Ty
MR = T2< - = \,E = 1E, (1.5.8)
T, X/
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where

X Ty
T= T, < - 2 > : (1.5.9)

Numerical evaluation of the elements gives the following matrix T.

.3549 .9349 0 0
T = (1.5.10)
-.008172 .003102 -.001603 -.007262

The final expression for E is given by equation (1.3,9).

- NS
E=MX +X S5-+A M At+H At AF .

In addition to the quantities already evaluated, A, and H, must be
evaluated in order to investigate the second order terms, From cutoff
data, given by (1,5.2), the following can be determined.

0 0 1 0]
0 0 0 1
A, = x 10°%
-.882 1.407 0 0
1.407 2,297 0 0]
i n
0 0 0 0
0 0 0 0
H = L
n -.0853 -.0068 .0000 -.2152
 -.3870 ,0015 .0001 .9766

The effect of these matrices on AR is determined by equation (1.5.8) and
(103'9)0
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MR =TE=T +|T% &5 + TA AX + TH AF | At. (1.5.11)
n n 2 n n n n

Equation (1.,3.6) gives the following expression for At.

T, X
Using the first order approximation for E, this expression becomes

Ty X
At = - ———

T, X,

This can be substituted for At inside the brackets in equation (1.5.11),
and the following expression results:

)in Ty~
MR = TAX + [T (} - ———-—-) M+ TH AF J AL, (1.5.12)
n In . Il I )1

2T, X

A brief look at the values of the elements of the matrices inside the
brackets will give an estimate of the contribution of these second order
terms.

Cutoff data from the standard trajectory, equations (l.5.2), pro-
vide the information necessary to evaluate these matrices,

X T, 0 0 L4779 .8882
'I<An - _.n.—-'-—> = < 10-3.
21y X_ -.0088 -.0189 -.0106 .0040
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To get an idea of the effect this term might have some extreme values
can be assumed for AX,. First, it will be assumed that /xp = Ay, = 100 km
and A% = - Ay = 100 m/sec. Then,

X T, “41,02
T<%n - —) & = < x 1073,
2T, X, 4,23

This means that the contribution to Ar is =-.041 km or ~-41 m for each
second of additional second stage burning time At. However, for A9 the
contribution is only -,004° for each second At. The signs associated
with the deviations assumed for AX, were chosen to have the greatest
effect on Ap., With this in mind, it can be concluded that these second
order terms are negligible with respect to A9. An extreme example for
Ar might be Axp = Ayp = 100 km and A%y = Ay = 100 m/sec. This gives

X T, 136,61
T<An - ——.—> MK, = < x 10"3,
2T; X -3,43

This gives a smaller error in Ag, but in Ar it would produce about 137 m
for each second of additional second stage burning time At, Whether this
term is negligible or not depends on a more critical investigation of

/% and Ay, which are not independent of each other. 1In most of the

cases considered later, /X, and Ay, were of opposite sign so that their
effect on Ar tended to cancel rather than add., A more detailed examina-
tion of the relationship of A%, and Ay, and their effect on the error in
Ar will not be pursued in this report., However, in the event that any
decisions depended on the assumption that this contribution be negligible,
further investigations could be completed at that time,

The other term in the brackets in equation (1,5.12) is

0 0 0 0

TH, = .

.00295 .0000 .0000 -.0062
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Choosing AX, = 3° and

ﬁ?(tn) = -,01 %(tn) = «,22 m/sec?

gives
3
9
A .
27
-,22
Then
B 0
THrl AFn = .

.00885 + ,0014

The contribution from AX, is .00885° per second and from Af/m, only
.0014° per second. The contribution of Af/m will be neglected, but the
contribution of A will be kept since it may be several hundredths of
a degree,

Having investigated the possible contribution of various second
order terms and finding several of them to be insignificant, we will

discard these and rewrite the expression for AR.

Defining two row vectors V; and V, by the following equation,

1
’
n

X T

1
v=<v =T<An- L
v T, X

then,

MR =TAX_ + VAKX At + TH AF . (1.5.13)
n n n n
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Equation (1.2.1) gave the following expression for JAV. S

t
n

AXn = U(tn’ to) + f U(tn, t) H(t) AF(t) dt.

t
o

Substitution of this expression for AX, into the linear term TAX, appear-
ing in (1.5.13) gives

t
n

MR = TU(tn, to) + f TU(tn, t) H(t) AF(t) dt + VAXn At + THrl AFn.

t
[o)

For convenience, these definitions will be made:

L fo fg £y F
(e, ©) K(E) = >=< > .
1 82 g3 84 G

Since all but one of the elements in the matrix THn were zero or
considered negligible, the following simplification is used:

0
TH AF = <g;> VAV
n " n n
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With these definitions and simplifications, the following expres-
sions for Ar and A9 are obtained:

t
n
N =T, AXO + ‘/h F AF dt + V4 Axn Pa\s (1.5.14)
t
(]
and
t
n
NS =Us AX0+ f G AF dt + g AXn At (1.5.15)
t
o]

The numerical values obtained for these expressions are listed below,

U, = <.34772 1.23145 .17029 .48137> (1.5.16)
U, = <}.008224 -.006970 ~-,005788 -.oo79o§> (1.5.17)
v, = <§ 0 L4779 .8882> x 10783 (1.5.18)
g5 = .00295,

The term AXp is defined by equation (1.5.6). U(tp, ty) is found
in Appendix I and the elements of U(tj) are listed in Appendix II,

The first order approximation for At is

=
Il
1

Il

© 0 -.04131 .,01568) AX_,

where AX, can be evaluated from equation (l1.5.6) as already mentioned.
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The integrals appearing in equations (1.5.14) and {(1.5.15) can be

evaluated by summation,

t
n n
G AF dt = G(t,) AF(t, t.
JF }: ( J) ( J) At
t0 j=1
and
t n
n .
F AF dt = F(t,) AF(t.,) At..
J ) ) s,
t j=1

The multiplying factors for AF(tj) will be defined as follows:

54(tj)> .

é(cj) G(tj) ij <?l(tj) ég(tj) é;(tj)

F(tj) F(tj) Amj <%l(tj) f2(tj) f3(tj)

These quantities are listed in Tables 1,4 and 1.5,
to determine these values is listed in Table 1.3,

employed
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TABLE 1.4

of 40,68 sec,

If AX = 0 for t > 612.5,

these values should be used

instead of those listed in the regular table for ty = 600 seconds.

30

F(t,
( J)

t, £, £.(1073) E3(10f4) £
160 -1.1877 -1.284 .6030 12,930
200 -1.4612 -1.388 L7419 13.118
240 -1.4790 -1.262 .7508 11.144
280 -1.4843 -1,133 .7535 9,297
320 -1.4741 -1.000 L7484 7.581
360 -1.4444 - .863 .7333 6.004
400 -1.3897 - .723 .7055 4,576
440 -1.3023 - .581 .6612 3,313
480 -1.1715 - 431 .5948 2.219
520 - .9802 - .297 L4977 1.319
560 - .7023 - .163 .3566 .624
600 - .2958 - 047 .1502 .151
600% - .2363 - .037 .1199 .151
*The values in this row were obtained by using At. = 32,5 sec instead




TABLE 1.5

G(tj)
o g1(10-%) g2(107%) 85(107°) 84
160 1,438 2,972 -.730 -.2995
200 2,068 3.487 1,049 -.3297
240 2,440 3,436 -1.239 -.3033
280 2,860 3,366 -1.452 -.2761
320 3.338 3,271 ~-1.695 -.2479
360 3,887 3.144 -1,973 -.2186
400 4,525 2,973 -2,297 -.1881
440 5.276 2,747 -2,679 -.1567
480 6.179 2,436 -3.137 -.1237
520 7.289 2,015 -3.701 -.0897
560 8.702 1,427 4,418 -.0547
600 10,764 .582 -5.465 -.0186
600% 8.599 465 -4,366 -.0186
*The values in this row were obtained by using At., = 32.5 sec instead
of 40,68 seconds., If X = 0 for t > 612,5, theseralues should be used
instead of those listed in the regular table for t, = 600 seconds.

J
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The results just described give the influence coefficients for AX,
Af/m and Mgy as they affect Ar and Ap, In that respect they are of
interest in themselves for the insight they provide. For computational
convenience, large integration steps were taken, This was done on a
desk calculator, and the procedure outlined can be checked against these
results by a desk calculator to verify the steps involved, Although
these results are accurate through two significant figures, this is not
sufficient for later work where the assumption of a constant coefficient
system and the integration steps were necessarily reduced from 40 second
intervals to 5 second intervals, These more accurate results were
obtained from an IBM 1620 digital computer program and used to derive
the guidance function discussed in the following chapter., Nevertheless,
the numerical example with stepwise evaluation included in this chapter
should serve to illustrate the procedure described.
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CHAPTER 1T

DETERMINATION OF A GUIDANCE FUNCTION

Section 1, Fitting the Nominal Trajectory

Equations (1.5.14) and (1.5.15) of the preceding chapter provide an
explicit solution for Ar and A9 as a function of AXg, é£(t) and AX(t),.
m

These equations can be employed to ensure that i, a function derived to
approximate the function X on the standard trajectory, will meet the
required end conditions, Ar = A6 = 0, Under standard conditions AX, = 0

and %f(t) = 0, In addition to this, if X sufficiently well approximates

the nominal value of X, the contribution of higher order terms becomes
-negligible, It will be assumed that this can be done sufficiently well
by describing X as a quadratic in t., For convenience, the following
transformation will be employed.

T ——t (2.1.1)

where t' denotes time on any trajectory and t; denotes ignition time on
that same trajectory, The term t' on an arbitrary trajectory will be
related to t on the standard trajectory by the following equation,

t' =t + Atg, (2.1.2)
where

A £, - t . (2,1.3)
Substituting these expfessions into equation (2,1,1) gives

t -t
_ [¢)

T 7100 -
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This definition was already used in equation (1.5.1). Thus, equation
(2,1,1) offers no contradiction,

The term % will now be defined as
X =T + Cyr + Cor? (2.1.4)

With this definition and otherwise standard conditions, equations (1.5.14)
and (1.5,15) become, respectively,

A = f £, [-Co + Gyt + Cot? - Xs(t)] dt (2.1.5)
t
(0]
tn
ho = f g1 [EO + Tyt + Co1® - xs(t)} de., (2.1.6)
t
o

The higher order terms in these expressions have been considered
negligible, The term Xg(t) is the nominal calculus of variations solu~
tion for X. To ensure that the end conditions are met, the following
constraints are imposed on the coefficients Eo, C, and Co.

tn tn tn tn
'(':O f f,dt + C4 f fir dt = - Co f f,1° dt + f fiXg (t) dt.
to to tO tO
(2.1.7)
tn th th ty
E30 \/ﬂ g, dt + C; u/\ g,7 dt = = C» \/ﬂ g,7% dt + \/ﬁ ngs(t) dt.
tO to tO to
(2.1.8)
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The integrals in equations (2.1,7) and (2,1,8) can be evaluated
quite well from the coefficients in Tables 1.4 and 1,5 together with
the values of 7 and Xg tabulated in Table 2,1, Although these results
may differ in the third or fourth significant figure from the values
shown below, the values presented were those actually used. Since the

resulting function X fits sufficiently well, the results of the following
constraints were not corrected,

14,284 C, + 28,8545 €, = - 79.49615 Ty + 1080.9536
.5872 C_ + 1.80745 C; = - 6.491105 Cp + 50.32710,

Solving for Co and El yields

o)
|

= 4,914469 C, + 56.523779 (2.1.9)

@]
[}
I

= - 5,187907 Co-+ 9.480948, (2.1.10)

Substituting these values into the expression for X shown in equa-
tion (2,1.4) yields

X = a(1)Cs + b(7), (2.1.11)

where

a(T) 4.,914469 - 5,1879071 + 2

and

56.523779 + 9.480948 1.,

b (1)

Any choice of 62 in equation (2.1,11) will produce a Ar and A§ of zero
providing the resultant value of AX is sufficiently small that the higher
order terms are negligible, A value of C, must be chosen with this in
mind, The sum of the squared residuals are given in the following
expression:

35



2

[Q(Tj) - X(tj)} .
j=1

Minimizing the value with respect to the choice of C, gives the following
least squares constraint,

5 S x(,)
b:_ = 2 Zl:X(tJ) - Xs(tj):] —:—-]— = 0,
&k & 32
Since
X (7,)
= a(r,),
3Cs J
this becomes
n > n
Co zgi [a(rj)J = zg: a(wj) [g(rj) - xs(tj)}. (2.1,12)
j=1 j=1

Using the expressions for a(r) and b(t) indicated in equation (2.1,11)
and the values of 1, and Xg(t.) indicated in Table 2,1 gives the follow-
ing numerical expregsion for gquation (2.1.12):

40,78235 C, = 14,57552,

This result, together with equations (2.1.9) and (2.1.,10), yields the
following coefficients for X.

Co = 58,2802
C, = 7.6268) , (2.1.13)
Co = .3574)

/
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and
X = 58,2802 + 7.6268¢ + .357472, (2.1.14)

X in the above expression is given in degrees and 1 is defined by
equation (2,1.1).

Table 2.1 shows a comparison of X with Xg, the function to which
it was fitted., The resulting residuals are sufficiently small that their
effect on second order terms is negligible,

TABLE 2.1

COMPARISON OF X AND Xg

:.(sec) Tj(lozsec) i(Tj) ) Xs(tj) (*) ‘ X - %) (%)
160 .1319 59,292 59.225% .067
200 .5319 62.438 62.460 -.022
240 .9319 65.698 65.745 -.047
280 1.3319 69,072 69.119 -, 047
320 1.7319 72.561 72.590 -.029
360 2.1319 76.164 76.168 -.004
400 2.5319 79.882 79.861 .021
440 2.9319 83.713 83.676 .037
480 3.3319 87.660 87.620 . 040
520 3,7319 91.720 91,693 .027
560 4.1319 95.895 95,896 -.001
600 4.5319 100,184 100,223 -.039

* The value 59.225 was erroneously used in the fit shown here., The
actual value, as shown in Table 1.3, was 59.255, This would make the
actual residual at this point ,040 instead of ,067, Since the coef-
ficients in equation (2,1,13) were used in later work and since the
error was of minor significance, for consistency and economy of effort,
this correction was not made and the coefficients in X have been employed.
as they appear in equation (2.1.14),
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Section 2, 1Initial Conditions

If we take another look at equations (1,5.14) and (1.5.15), they
appear as follows:

tl’l
Ar=UlAXo+f F AF dt + Vy X A,

t
()

and

tn
UZAXO+f G AF dt + g5 X A,

t
o

NG

where

To keep the guidance function as simple as possible, the second
order terms must be negligible or made so, The term V; AX, At is
extremely difficult to evaluate at second stage ignition., Both At and
Mp are functions of Af/m and AX along the entire trajectory. Because
of the difficulties involved, this term will first be ignored, and if
after making this assumption, the resulting function is not sufficiently
accurate, the problem can again be taken up at that time,
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The second order term gs/AX At, however, poses a different problem.
The forcing function which we wish to determine, AX, appears as a multi-
plier, This term was the only one considered significant in the follow-
ing term from the expression for E, equation (1,3.3), after it was
substituted into equation (1.5.,8).

to=Atg temAtg
TH AF dt ~ g1+ 25 Ay g, (2.2.1)
f/m
tn tn

If AX is chosen to be zero throughout the interval defined by the limits

of integration, the entire integral would be zero. This can be assured

if a 8 is determined such that At = & for all likely nonstandard trajec-
tories (At = tc = tp - Atgy). By defining AX such that XX = 0, t > t, + 9,
the integral appearing on the right in equation (2,2,1) will always be

zero and the second order term gsAX At has been eliminated from the expres-
sion for A6.

At second stage ignition time, the only information available is

JAV. 0% %?(t) will not be known for t > t, until a later time, and not

completely known until cutoff, A value of X must be determined, however,
With this in mind, AX will be defined as the sum of two functions, One
function, AX,, will be determined at second stage ignition to meet the

required end conditions if %%(t) is zero throughout the second stage,

The other function 8X will be determined as a function of Af/m as this
function becomes known, Thus, AX is defined as

X = AXO + BX. (2.2.2)

Under the assumptions just described, AX, must satisfy the following
equations,

tntd £ 5 t+d

or = Uy X+ f £, 4% dt + ff2 MEdt + ff3 MG dt = 0, (2.2.3)
t t t
(o) (o] (o]

39



and
t +5 t +5 t +d
n n n

A9=U2Axo+fglAXo dt+f gz X2 dt + [gs X dt= 0, (2.2.4)

t t t
(e} (o} (o}

The solution in the example given in Chapter I was obtained by
assuming a constant coefficient system of differential equations for
intervals of 40 seconds and the integral evaluated by summing over
40-second intervals, This was done to simplify the problem to the point
that the numerical results could be obtained by simple desk calculator
operations, The numerical values employed in the following sections
assumed a constant coefficient system over five-second intervals and
evaluated the integral by summing over five-second intervals, This was
done on an IBM 1620 digital computer and although differing only in the
third significant figure in most cases, was considered necessary for the
accuracy desired.

From observation of the results of several different calculus of
variations solutions, it was expected the following form would be ade-
quate to represent AXO.

8)
AC -+ ACoT=, TS T_ +
AX = o) n 100 (2.2.5)
© 0 T>1  + S
? n 100

Since the standard trajectory is expected to always be included
among the likely trajectories, ® will always be less than or equal to
zero, The value assigned to & in this report is -8,18 seconds,

The requirements stated in equations (2,2,3) and (2,2,4) seem to
imply that the simultaneous solution of two third-degree polynomials in
two variables is needed, It should be remembered that if the linear
terms are extremely large with respect to the higher order terms, the
linear expression itself provides a good approximation to the solution,
Such is the case in the problem at hand., The solution to the linear
system can be used to approximate the second order term to effect an
iteration on the solution, The linear system can be expressed as
follows:

BAC' = - U X, (2.2.6)
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where

t_+3
n fl flT2
B = »/\ dt, (2.2.7)
t 81 817°
o
Uy
U = = TU(tn, to), (2.2.8)
Uo
and-
ACé
AC' = . (2,2,9)
ACh
AC! and ACL, the solution to the linear system, are determined as follows:
fo) 2

AC' = - BT U AX . (2.2.10)
The second iteration gives

Ac!
)

AC" =
ACS

from the following equation:

2
BAC" + U X+ Bo AC' =0 (2,2.11)
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where

12 _ ' 1
AC 2n¢! Ack|

]
AC2
—— -
and
tn+6 R
£, for fo1
s [
£ &2 got1? gaT
o
Then,
ACT = - BTT U AX_ - BT By ACE

The third iteration including the third ordered term gives

AC
o

ACs

the solution to the following equation:

2
BAC + U XX + B A """ 4+ B3 AC

ll:3

=O’

(2.2.12)

(2.2.13)

(2,2,.14)

(2.2.15)

2 .
where AC" 1is obtained from equation (2,2.12) by replacing AC) and ACY

by ACy and ACY, respectively,
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B T

AC”S
o
3aC"° ACY “(2.2.16)
ACTS = o .2 o
2
1] 1]
3&00 AC2
13
| ACz .
and
tn+6 _
f3 f3T2 f3T4 f3T6
Bs = f dt. (2.2,17)
£ 83 83T2 g3T4 g3T6
o
The solution for AC is
ACO > 3
AC = = - Bt UAX - B™ By aC" - B~ B AC'T, (2.2,18)
ACo

The integrals and other numerical elements necessary to determine
the matrices required of the above equations are listed in Appendix III,
They have been obtained numerically under the assumption of a constant
coefficient system over five-second intervals, and the integrals evaluated

by summing over five-second intervals.

matrices:
U, . 349481 1,259049
U = =
U= -,008175 -.007129
L— >
-14,523714 -79,737064
B = .
.570968 6.044026

.170980

-.005744

These results yield the following

.491843

-.008092

(2,2,19)

(2.2.20)
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-.092285 -.328751 -2,813252

B, = , . (2.2.21)
.003168 016477 .171907
.000737 .004048 .043109 .572059
By = ) (2.2.22)
-.000029  -,000307 -.004554  -,075637

Inverting the matrix in equation (2.2,20) gives

.143038 1.887071

. (2.2.23)
-.013512 -.343720

..B"l=

The result, together with equations (2.2,19), (2.2.21) and (2.2.23),
gives

. 034562 .166639 .013617 .055082
- B~y = ’ , (2.2.24)
-.001912 -.014562 -.000336 -.003864
-.007222 -.015931 -.078001
- B! B, = , (2.2.25)
,000158 -.001221 -.021075
and
.000051 0 -.002427 -.060906
- BB, - (2.2.26)
0 .000051 .000983 .018268
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Choosing the following initial condition deviations, an example of
the determination of AC will be followed,

F17.2860_

5.5463

AX = (2.2.27)
-4, 6494

-58.34471

This, together with equations (2.2.10) and (2.2,24), gives

-1.7554

AC' = . (2.2,28)
.11319

2
The term AC' , defined in equation (2.2.12), is
3.0814
Ac'S = |-.39739 |,

.012812
This, with equations (2,2,14) and (2.2.25), gives

-1,7554 -.01692 -1,7723
AC" = + = .
.11319] - .000702 .11389

This result can be used to determine AC'® and AC"® as defined by
equations (2.2.12) and (2.2.16), respectively, to give

3.1410 ~>.5668
Act® = | -.40369 and act® =| 1.07320 4
.012971 -+ 06897
.001477
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‘These results are used in equation (2.2.18), together with the
matrices defined by equations (2,2,25) and (2.2.26), to give the
following solution AC,

-1.7554 -.0173 -.0002
AC = + +
.11319 .00007 .00001
ac, -1.7727
M= pes | T 11327 (2.2.29)

Section 3, Second Stage Perturbations

Having obtained a function, AX,, which should meet the required end
conditions for a standard second stage, it remains only to determine &X
such that the effect of Af/m on the end conditions is small. This
requires further investigation of the expressions for Ar and A8 which
are obtained from equations (1.5.14) and (1.5.15)., A restatement of
these equations with the omission of the second order terms which have
already been neglected or accounted for yields the following expressions,

t
n
Ar o= Up X+ ‘/p F AF dt, (2.3.1)
t
(o]
and
t
n
28 = Up X+ ‘/ﬁ G AF dt, (2.3.2)
t
(o]

46




Substitution of U, for U; and G for F transforms the expression for Ar
into the expression for Ag. With this in mind, only the expression for
Ar will be considered, and the corresponding result for A9 can be
obtained by the substitution just described. From equation (2,2,2),

DX = XX, + BX. Substituting this expression into AF in equation (2.3.1),
and recalling that AF is defined as

N /m
<1 +—f/m>ax

<1 + %—%ﬂ> NG
AF = , (2.3.3)

Af/m a3
(1 29)

Af/m

gives, after expanding and neglecting all previously unaccounted terms
higher than second order, the following expression,

t t t
n
2 3
Ar=UlAXO+f flmgodt+f ng)(odt+f £5 2 dt
t t t
o o 0
tn )
f1 o 2
+ [(fl+2f2AX0) 6X+<f4+f/ AXo>m+f2 &%
t
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It will be recalled that the coefficients for AX, were determined

to satisfy equation (2,2,3), This constraint required the following
relationship to exist.

2
+ S =
Uy &K f £, X dt + f fo A dt + f f5 X dt = 0,

Thus, the entire contribution to Ar stems from the last integral of the
expression, namely,

t
n
- f1 Af 2
e f {(fl + 265 X ) BX + <f4 * AXO> — + fp BX
t
o
f1 Af
+ T/m m 6X} dt. (2.3.4)

The evaluation of the above integral requires the knowledge of
Nf/m along the entire trajectory. This information is not available
until after the cutoff conditions have been reached, However, in
order that the integral be zero, it is sufficient that the integrand
be zero everywhere, In determining an adequate guidance function, this
restriction can be relaxed, Tt is sufficient that the integrand be
sufficiently near zero that the integral is negligible. In order to
. accomplish this, ®X must be a function of Af/m, The following form is
chosen for X,

2
BX = W, % + Ws %) . (2.3.5)
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Substituting this expression into equation (2,3.4) and neglecting terms
higher than second order gives

t
n 2
Nr = f [arl(t) -At—nf- + 8ro(t) <éfn7> J dt, (2.3.6)
t
(o]
where
£
sro(t) = £,W, + £, + EJ/'H M+ 26 AX Wy (2.3.7)
and
£
pro(t) = £.Ws + £W;2 + Flm Wi (2.3.8)

Similarly, for A9, the following expression is obtained:

t

n 2
No = f {SGl(t) % + 80(t) <%->] dt, (2.3.9)
g .
where
56,(t) = g Wy + g4 + %%E AXO + 2g5 AXO Wy (2,3.10)
and
g
505(t) = g Wo + g W% + 'f'}'ﬁwl' (2.3.11)
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The term W, will be considered a quadratic function of 7 and the
coefficients determined to minimize the sum of squares of equations
(2,3,7) and (2,3.10) simultaneously for a number of time points along
the trajectory. Wy will also be considered a quadratic function of 7
and the coefficients determined similarly using equations (2,3.8) and
(2,3.11), For convenience, the following definitions will be used
where the indicated summation is intended to include a convenient
number of time points evenly distributed over the entire trajectory.

1 T T8

c(er) = fo T = (2.3.12)
78 3 T4
1 T T2

C(dg) = j;1g12 T 72 |- (2.3.13)
- T2 T2 T

|1
-7flf4 .. (2.3.14)

C,(dx) =

.2

1
C,1(30) = - j;1g184 T |- (2.3.15)

2

1 T2

£.2

C.(dr) = - 3;1 E%E T ™. (2.3.16)

.2 o4
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N

Co(586) ='- 3;1%%— T

fa—

2

CBQW) = - E: flf2 T

C5(%0) = - j;‘gng T

bo bl b2
b (b) = |0 b b,
0 0 b

i

(2.3.17)

(2.3.18)

(2,3.19)

(2.3,20)
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C4(6r) = - Z £

F?

]

gl wn

Ia B !
M

C4(69) = -
1
T
C5(6r) = - yflfg T2
[
TS
U4

~1
=F
~
g8l wn
— 5 =
L=} = —
N

(2.3.21)

(2.3.22)

(2.3.23)

(2.3.24)

(2.3.25)



1
T 72 3
| Cs(80) = - Yglgg N (2.3.26)
L
3 T 7>
) T4 72 76
_ao_
a=1]a;|. (2.3.27)
as

With these definitions established, W; and Ws will be defined as
follows and a least squares fit obtained.

Wl bO + blT + b2T2. (2.3.28)

Wo = a, + a7 + ast=, (2.3.29)

Minimiéing the sum of squares of equation (2,3,7) over the
specified number of time points yields the following constraint on the
coefficients by, b; and bz

C(dr)b = Cy(dr) + [Cg(6r) + 2b* (b) C;(Sr)} AC,
The criterion for minimizing the sum of squares of %6(t) defined

in equation (2,3,10), however, is

C(38)b = C1(88) + [02(66) + 2b*(b) C3(66)} AC.
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In general, the least squares criterion for Br;(t) differs from
that required for 56;(t). A single solution requires one criterion
which is a function of the two separate criteria just derived. The
single criterion used in this report will be a weighted sum of the two
separate criteria just derived. To this end, the following matrices
will be defined,

D = C(dr) + a2C(50). (2.3.30)
Dy = C,(dr) + o C41(30). (2,3.31)
Do = Co(Br) + OF C2(36). (2.3,32)
Ds = Cx(dr) + oF C=(30). (2.3.33)
D, = C.(dr) + oF C.(58). (2.3.34)
Ds = C5(3r) + &F C5(88). (2.3.35)

The symbol ¢ is a weight used to represent the relative importance
of angular error A6 to radial error, Ar. Combining the two separate
criteria into one criterion in the manner described, yields the follow-
ing constraint on b,

Db = D, + [Dg + 2% (b) D;} AC.,

The term in brackets represents a second order term and will be
handled by obtaining an approximate solution b' by ignoring higher order
terms and then determining b by using b' to approximate b in the expres-
sion b*(b). With this in mind, the solution to the following equations
defines b',
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Then,

b' =D~ D,. (2.3.36)

With this first order approximation available, an iteration will be used
to determine b from the equations

Db = D, + (DE + 267 (b") D3} AC,
) L

and

o
1l

D" D, + D7 {Dg + 267 (b") D3} AC,

or

o
n

b' + D"t [Dg + 2b*(b") D3] AC, (2.3.37)

Having determined the coefficients for W,;, it remains only to
determine the coefficients for Wo, Minimizing the sum of squares of
dro(t) gives

C(dr)a = b¥(b) Cs(dr)b + Ca(dr)b.,
Similarly for 865(t), the following result is obtained:
c(86)a = b (b) Dgb + Dyb.
Combining these two expressions as before gives

Da = b*(b) Db + Dyb.
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The contribution of Wo(Af/m)Z is small compared to that of Wi %f. In

addition, b' is a good first order approximation to b, 1In view of these
facts and to avoid unnecessarily complicated expressions introduced by
relatively insignificant terms, b' will be used in the above system

thus making "a'" independent of AC. Under these conditions, the follow-
ing equation will be used to determine '"a',

a = D1 [D4b' + b* (") DSb'}. (2.3.38)

Equations (2.3.36), (2.3.37) and (2.3.38) provide a means of
determining the coefficients for W; and W, so as to minimize, as near
as possible within the restrictions imposed, the sum of squares of
dri(t), dro(t), 86,(t), and 50-(t) and hence their effect on Ar and A6,
An example will determine whether or not this has been accomplished
sufficiently well for the result to be used as a guidance function,

The values for the f's and the g's were not available, The com-
puter program employed yielded the f's and g's evaluated at five-
second intervals and multiplied by At = 5 sec., Since every value used
was multiplied by the same constant, the least squares solution is
mathematically identical to that which would have been obtained if
none of the values had been multiplied by At, Since the following
summations were done on the desk calculator, only every fourth point
was used and each summation involved 24 time points spaced 20 seconds
apart beginning with t = 150 seconds., The following numerical values
were obtained,

25 g° = .118972 x 10-;

£,2 = .662385 25

g5t = 427513 x 10-2

25

Fh
o
N
=
N
l

25 j{ileT = 1.112071 25
)

Fh
|
N
G
]
%
-
=
1]
N

8.040666 25 g1°1° = 6.737941

25 Z

25 j;wfl2T4 25,186436 25 27.921969 x 1o-i
56 - (2.3.39)

aQ
l_l

=)

I

2,782090 25 Z{:g12f2 = 1,664566 x 10‘9>




25

25

25

25

25

25

25

25

>~>1 1 Y]

~1 D1

>~

= ~3,417960

= -4,104875

-7.961945

.071016

.107982

. 244417

656697

1.942588

25

25

25

25

25

25

25

25

>~1 1 ]

>~>1 1 >

>

g184 = - .26176 x 1072 )

g184T = - .55670 x 1072 )(2,3.40)
!

g18475 = =1,573233 x 1072

2
81_ = 008462 x 1072
f/m

2
81T - 027354 x 10-2
f/m

2.2

-2
T .100396 x 10

2.3
211 - 390356 x 10-2
f/m

2.4

BL ' - 1.,569404 x 10~2
f/m

\
|

"

(2.3.41)
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\
25 :{1f1f2 = ,42248 x 1072 25 j;1glg2 = .040996 x 107%|
25 E{iflng = ,59287 x 10-2 25 j;1glg2T = ,102289 x 10~*
25 Zflfgfg = 1,27461 x 10-2 25 Zglgg’rz = ,316953 x 10"%
. 1
!
25 ZflngS = 3,29295 x 10-2 25 7g1g213 = 1,079346 x 10‘45
|
25 j;wflf214 = 9,43480 x 10-2 25 j;jglg214 = 3.876986 x 10'4E
|
25 j;1flf2T5 = 29,30378 x 1072 25 :{1g1g215 = 14,529144 x 10™*
25 jliflng = 95,57426 x 1072 25 j{:glg2T6 = 55,835969 x 10~*

(2.3.42)

To obtain one set of equations, instead of one for Ar and another
for A8, it is necessary to choose a suitable value for &. The value
chosen for this report is & = 5. This is equivalent to saying that an
error in angle A9 of 0.1 degree is five times as bad as an error in r,
Ar, of 100 m, Or, equivalently, a value of Ar of 100m is weighted the
same as N = ,02 degrees. With o = 5, of = 25, This, together with
the sums evaluated in equations (2.3.39) through (2.3.42) gives the
following matrices:

.652128 1.218949 3.198232
25p = |1.218949 3.198232 9.725151 (2.3.43)
3.198232 9.725151 8.355253

58




25D,

25D,

25D

25D,

25D =

3.483400
4,244050

8.355253

-.073132
-.114820

-.269516

- 432729
- 0618442
- 1,353848

- 3.562787

| -10.404047

-,073132
-,114820

-.269516

-.432729
-.618442
-1.353848

-3.562787

L:10.404047

-.269516
-.754286
-2.334939
. 1.353848]
- 3.562787
- 10.404047| x 1072
- 32,936066
-109,533252
-.114820 - 269516
-.269516 -.754286
-.754286  =-2,334939
~.618442 -1.353848)
-1,353848 -3.562787
-3.562787  -10,404047
-10.404047  .-32,936066
~32,936066  -109.533252]

(2.3.44)

(2.3.45)

(2.3.46)

(2.3.47)

x 1072, (2.3.48)
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From equation (2.3,43), the following inverse is obtained.

11.368704

-1
[25D1J = f% D=t = [-11,105430
2,227201

-11,105430
14,724394

-3,347514

-3.347514].

(2.3.49)

Equations (2,3.36), (2.3.44), and (2.3.49) give the following

solution for b',

11,0786
b' = [-4,1629].

L4168

Equations (2,3,45) and (2.3.49) yield

-.15656
D™! D, = | .02372

.00002

11224
-.29707].

. 00607

(2,3,50)

(2.3,51)

Referring to equations (2,3.20), (2.3.46), (2.3.49) and (2.3.50),

the following result is obtained.

-.11688
D™l b¥*(b') D5 = | .06228

-.00861
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-.15880

.03506

(2.3.52)




The results obtained from equations (2.3.50), (2.3.51), and
(2.3.52) can be combined in equation (2.3.37) to give the following
values for the coefficients of W;.

bo 11,0786 -.39032 .22390
b=1] by = |-4,1629| + .14828 -.61467| AC, (2.3.53)
bs 4168 -.01720 .07619

From equations (2.3.47), (2.3.49) and (2.3.50), we get

-1.7201
D™! Db = .8397]. (2.3.54)

- .1083

Equations (2.3.20), (2.3.48), (2.3.49) and (2.3.50) give

-1.1589
D~ b*(b') D.b' = .7580 |. (2.3.55)

- ,11970

Using the expression obtained in equations (2,3.,54) and (2.3.55)
to evaluate equation (2.3,38) gives the following coefficients for Wz,

a -2,8790

(o]
a=|a; | =Dt [D4b' + b*(b') Dsb':| =1 1,5977]. (2.3.56)
as - .2280
I L .
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The complete expression for X can now be stated. Equations (2,1.13),
(2.2,2), (2.2.5), (2.3.5), (2.3.28), (2.3.29), (2.3.53), and (2.3.56)
yield the following function,

X = (58.2802 + AC,) + 7.62687 + (.3574 + AC=)TZ + (bg + byT + b2T2)‘%?i
+ (-2.8790 + 1,59771 - .228071%) (Af/m)2,
/
0 <71 < 4,65685
!
X = 58,2802 + 7,62681 + .357472, 1 > 4,65685 Y
(2.3.57)

The terms AC, and AC, are determined at second stage ignition from
equations (2.2.10), (2.2.14), and (2.2.18) using the matrices evaluated
in equations (2,2.24), (2.2.25) and (2.2,26) with the definitions of
equations (2.2.9), (2.2.12) and (2.2.16)., Also by, by and by are deter-
mined at second stage ignition and are evaluated after AC, and AC> by
equation (2.3.53). The symbol 1 is defined in equation (2.1.1), and
NM/m is defined as follows.

8.78065
1,3751 - .208887 °’

S0 = 2(e + ) -

where Af/m is in m/sec® and X is in degrees.

This guidance function has been derived for trajectories in the
neighborhood of the standard trajectory employed. The example already
used to illustrate the method of determining AX, employed the following
initial condition deviations stated in equation (2.2,27) where /x,, 4y

)
are in km and A%, and Ay, are in m/sec,

Tax ] [F17.28607]
[0}
Ay 5.5463
(o]
X = = .
AX g -4,6494
| &F, | |-58.34471

62




These values yielded the following values for AC, and ACo
(equation 2,2.29),

These values of ACo and ACs can be used in equation (2.3,53) to
give the following values for by, by and bo.

b 11.7959
(o]
b=|by | = [-4.4954],
b 4559

The function which would be used to determine X for the deviations in
initial conditions used in this example would be

X = 56.5075 + 7.62687 + 4706772 + (11.7959 - 4,49541 + ,455912) %% }
+ (-2.8790 + 1,59777 - .22807%) (Af/m)Z
05t = 4.65685 f
E
X = 58,2802 + 7.62687 + ,357472%, T > 4.65685 J
(2.3.58)
where

8.78065
1,3751 - ,2088871 °

Nf

m

2 im

(t + aey) -
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Section 4, Implementation

The employment of the guidance function just described would
involve the precalculation of the following quantities which have
numerically evaluated for the mission under consideration,

C, = 58,2802
C, = 7.6268
Co = .3574
. 034562 .166639 .013617
-B~1iy =
-.001912 -.014562 -,000336
-.007222  -,015931 -.078001
-B_1B2 =
.000158  -,001221 -.021075
.000051 0 -.002427
-.B.-J'B3 =
0 .000051 .000983
11,0786
b' = D7D, = [-4.,1629
4168
-2.8790
D~* {D4b' + b)) Dbb'} = | 1,5977
-.2280
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.055082

-.003864

-.060906

.018268

(2.

(2.

(2.

(2.

(2

been

4.1)

4,2)

4.3)

4.4)

4.5)

.4,6)



With these quantities precomputed, they can be used to determine
the following quantities as soon as AX, is determined, This is deter-
mined by measuring x, y, X and ¥ at ignition time of the second stage.
From these measurements the elements of AX, are determined.

X 153,983
o
v, 6435,878
AXO = = 5 (2-4-7)
% 2818,329
Vs 988.358

where Xo and ¥, are measured in kilometers and %X, and ?0 are in m/sec.
Then AC is computed in the following sequence of operations.

.034562 .166639 .013617 .055082 Ac;
AC' = X, =
-.001912 -.014562 -.000336 -.003864 AChH
(2.4.8)
B 7
2
ac)
-.007222 -.015931 -.078001 o ACY
AC" = ACT + : ZACé AC! =
.000158 -.001221 -.021075 5 ACY
ACh
(2.4.9)
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and

o AC' ! 2
-.007222  -,015931  -.078001
AC = AC' + 21Cq ACY
.000158  -.001221  -.021075
AC"2
2
r AC' 1 S ]
O
.000051 0 -.002427  -.060906| |3AC"® AC! AC
+ o 21 _ o
0 .000051 .000983 .018268| [3acy ach® ACs
AC' ' 3
—— 2 i

(2.4,10)

Having obtained the values of AC, and AC,, the values of by, bj
and b, can be determined,

bO 11,0786 -.39032 .22390
b=|5by | =]-4.1629] + .14828 -.61467| AC. (2.4.11)
b, L4168 -.01720 .07619

With by, by, bp, AC, and AC, determined from the deviations at second
stage ignition, AX,, the thrust angle X is determined hereafter by the
following function.
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X = (58.2802 + AG,) + 7.62687 + (.3574 + AC2) 1% by AL 4+ byr S )
+bor? 2L 12,8790 (Af/m)2 + 1.59771 (Af/m)? - L2280 (AF/m)Z,

/
0 =1 = 4,65685

X = 58,2802 + 7.626871 + .35747%, T > 4.65685

J

(2.4.12)

The term Af/m in the above expression is determined by the relationship

: £ 8.78065
= (O =5 (O - T3757. 08887 ¢ (2.4.13)

where

oo ° (2.4.14)

The term t, is second stage ignition on the nonstandard trajectory,
t' is time measured on the nonstandard trajectory; t' and t; are in

seconds, f/m is in m/sec®, and X is in degrees.
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CHAPTER III

RESULTS AND CONCLUSIONS

Section 1. Adjustment to a Different Standard Trajectory

In the event that performance of trajectories in the neighborhood
of a different standard trajectory is to be investigated, it might be
best to duplicate the computations which have been described in Chapters
I and II for the new standard trajectory if it differs greatly from the
standard which was originally assumed., However, if it differs only
slightly, there will be small deviations in the desired end conditions
if the function derived for X is used to define X on this trajectory.
These deviations will be represented by the following vector.

AR = . (3.1.1)

To meet the desired end conditions, equation (2.2.15) will be modified
to the following:

/R = BAC + U AX_ + By AC"® + Bs AC + AR = 0. (3.1.2)

If the definition of AC' given by equation (2.2,.6) is modified to the
definition

AC' = - BTN U A - BT AR, (3.1.3)

then all the subsequent computations can be performed exactly as before.

To demonstrate the accuracy of the function which has been derived,
an available computer program was employed which was designed for this
purpose, The differential equations of this program described the
motion in three dimensions and used a gravity field which differed from
that assumed in this report. The program was extremely intricate and
difficult to alter so that it would duplicate the simple two-dimensional
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differential equations of motion which were assumed in deriving the

guidance function presented in Chapter II. It was considered simpler
to assume that this program represented a slightly different standard
trajectory and alter the coefficients for X accordingly. The follow-

ing values for Ar and A9 were obtained when X, defined by the coefficients
in equation (2.1.13), was used.

Ar = -1,8084 km
(3.1.4)
nNe = .05955°
‘and
_ -1.8084
/R = . (3.1.5)
.05955

Using -B™* from equation (2.2.23), the following values are obtained.

_ -.1464
-B~* AR = .
. 0040

Employing this result in equation (3.1.3), together with -B7lU
defined in equation (2.2.24), gives the following relationship for AC'.

.034562 .166639 .013617 .055082
AC' = X
-.001912 -.014562 -.000336 -.003864
-.l464
+ . (3.1.6)
.0040
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Section 2. Coefficient Computations

Having determined the guidance function and adjusted it to the
standard trajectory of an available computer program, it was then
verified by using this guidance function for a number of different
sets of initial conditions. These initial conditions resulted from
various nonstandard first stages and were combined with several dif-
ferent second stage perturbations., Table 3.1 lists these deviations
in initial conditions along with the first stage deviation which caused
them., Equation (3.1,6) was used to determine AC' instead of equation
(2.4.8); AC was then determined from equations (2.4.9) and (2.4.10).
These results along with by, b; and b, computed from equation (2.4.11)
are listed in Table 3.2,

TABLE 3.1

DEVIATIONS IN INITIAL CONDITIONS

Example First Stage X ry Nk a4
No. Deviations (km) (km) (m/sec) (m/sec)
1 None 0 0 0 0
2 +5000 1b -.93152 -1.1623 -30.2692 -22.78749
3 -5000 1b L94444 1.1824 30.8335 23.36393
4 Engine #2 17.28599 5.5463 -4 ,.6494 -58.34471
out at 100 sec. ’
5 Tail Wind .10183 | 1.8180 2.7670 25.69483
6 Head Wind -.34235 - .4055 -5.3173 -5.40216
7 Left Cross Wind -.10434 | - .1788 -1.5250 -2.33100
8 Right Cross Wind .09092 .2155 1.4240 2.87015
9 -1% W 4,76116 | 1.1588 48,5244 -4.54684
10 +17 W -3.31692 -.6959 -39.7298 3.74070
11 +1% F 1.19032 1.9245 29.8569 29.73483
12 -1% F -1,22157 -1.,9050 -30.7597 -29,22741
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TABLE 3.2

COEFFICIENTS DETERMINED FROM INITIAL CONDITIONS

Example No. ACq, ACo b, b, bo
1 - .l464 .00400 11.1381 -4.1877 L4197
2 -2.0636 .12186 11.9115 -4,5439 L4616
3 1.7735 -.11491 10.3634 -3.8305 L3777
4 -1.9224 .11798 11.8556 -4.5206 .4589
5 1.6001 -.12227 10.4293 -3.8516 . 3801
6 - 5977 .03329 11.3205 -4,2725 L4297
7 - .3295 .01634 11.2122 -4,2224 .4238
8 .0702 -.01088 11.0504 -4.1465 L4148
9 .6194 -.02062 10,8343 -4.0593 L4047

10 - .7151 .01946 11.3631 -4,2814 .4306
11 2.2337 -.15007 10.1762 -3.7408 .3671
12 -2,5718 .15881 12,1178 -4,6418 L4731

Section 3, Results of Application

Tables 3.3 and 3.4, respectively, show the deviations in Ar and A9
obtained from these examples, Example No. 4 which resulted from an
engine out at 100 seconds in the first stage had a rather large out-of-
plane position and velocity deviation which was not assumed to exist
in the equations for which the function was derived. 1In spite of this,
the results reflect the type of accuracy that can be expected when mis-
sion accomplishment is mathematically imposed as a criterion for deter-
mining the coefficients of the guidance function,.
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Table 3.5 shows the additional fuel required beyond that required
for the calculus of variations solution to the same set of conditions.
No calculus of variations solution was available for the case in which
F and W were each -5% throughout the second stage so that a fuel com-
parison could not be made for this example.

TABLE 3.3
Nr (Meters)
Perturbations
2nd Stage
1st Stage None -1% £, W +1% £, W -5% £, W
None -1 53 -40 23
+5000 1b 35 95 -27 -157
-5000 1b 25 55 28 151
Engine out at 100 sec 179 175 179 -326
Tail Wind * 73 7 201
-Head Wind -2 60 -44 -12
Left Cross Wind -7 54 -43 7
Right Cross Wind * 46 -42 32
-1% W * 61 50 *
+1% W * 144 -9 *
+1% £ * 57 43 *
-1% £ % 92 -21 *

*Due to underestimation of required computer time, these cases
were not completed, It was felt that their inclusion would not
significantly change the results.
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TABLE 3.4

A8 (Degrees)

Perturbations
2nd Stage

lst Stage None -1% £, W +1% £, W -5% £, W
None -.001 .012 -.027 -.004
+5000 1b .004 .019 -.026 .020
-5000 1b -.003 .006 -.023 -.023
Engine 2 out at 100 sec -.001 .013 -.029 .008
Tail Wind -.006 .006 -.030 -.015
Head Wind * .013 -.026 .000
Left Cross Wind -.001 .012 -.027 -.002
Right Cross Wind -.002 .011 -.027 -.005
-1% W * .009 -.021 *
+1% W * .014 -.032 *
+1% £ * .005 -.023 *
-1% £ * .021 -.025 *
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TABLE 3.5

' Fuel Loss (1bs)
Perturbations
2nd Stage
lst Stage None -1% £, W +1% £, W
None 5 5 5
+5000 1b 7 7 6
-5000 1b 4 4 4
| Engine 2 out at 100 sec 2 1 2
Tail Wind 5 4 5
o Head Wind * 5 5
Left Cross Wind 5 5 5
. Right Cross Wind 5 5 5
-1% W * 5 5
+1% W * 7 7
+1% £ * 4 4
-1% £ * 7 6

Note: Calculus of variations solutions for the -5% £, W case
were not available to compare fuel consumption.




It is interesting that the only requirements which would keep fuel
consumption small was the fact that X was fitted to the value of X obtained
from the calculus of variations solution for the standard trajectory and
the AX, was chosen of a form which would fit well the deviations -
.encountered by calculus of variations solutions with nonstandard initial
conditions. Aside from these two requirements, no further attempt was
made to minimize fuel. WNevertheless, Table 3.5 indicates that this
appears to be sufficient for negligible fuel loss.

To illustrate the difference in some of these nonstandard trajec-
tories, it should be pointed out that example No. 4 which resulted from
a first stage engine out at 100 seconds with second stage perturbations
of -5% thrust deviation and simultaneously -57% flow rate deviation
required 30 seconds additional burning time and displaced the cutoff
point 136 km. The radius error was -326 m and cutoff angle error +.008
degrees both of which appear quite acceptable.

Section 4. Further Applications .,

The guidance function derived and applied in this report was pre-
sented primarily to illustrate the effectiveness of obtaining an explicit
solution to the linearized differential equations of motion. It should
be emphasized that to linearize the differential equations, it is not
necessary to linearize every parameter. It is sufficient that the
state variables be linear leaving the forcing functions to whatever
form they may have. This same procedure can be applied to other dif-
ferential equations including calculus of variations equations or equa-
tions of motion in a different coordinate system. The linearized equa-
tions are always sufficiently accurate in some neighborhood of the
standard solution. Whether this neighborhood is sufficiently large to
include all expected deviations cannot be stated in general but must be
specifically investigated for the particular differential equations under
consideration. The differential equations of motion are readily adaptable
to such analysis.

In addition to the parameters included in the analysis of Chapter I,

any of a number of other parameters could have been included and their .
effect on cutoff deviations determined.
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Section 5. Conclusions

The results of this investigation illustrate the accuracy of the
solution to the linearized differential equations of motion as well as
the value and means of obtaining the solution in explicit form, 1In
addition to the insight it provides, it is a powerful tool for mathe-
matically imposing the mission criteria in the determination of the
coefficients of a guidance function. Further applications of the
explicit solution to a linearized set of differential equations to the
analysis of a nonlinear system are restricted only by the differential
equations themselves and the imagination and ingenuity of the analyst.
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U(tp,

U(ty,

U(t

n?

tn)

600) =

560) =

leo o o =1

o o = O

.01886

.02833

.99917
.00104
.05890

.07863 -

APPENDIX I

U(tna t)

(t, = 620,68 sec.)

.02833

. 04812

.00104
1.00200
.07863

.14472

o = O O
(2o O O

.02608

.06068
.00000
.99925

.00113

.00000
.06068

.00113

1.00192
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U(t., 520) =

n?

U(tp, 480) =

U(tp, 440) =

u(t,, 400) =

n?
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.99647
.00366
.10332

.12186

.99177
.00760
.14971

.16106

.98488
.01239
.19814

.19521

.97571
.01767
.24801

. 22453

.00366
1.00808
.12191

.24516

.00760
1.01846
.16133

.34912

.01240
1.03332
.19605

.45658

.01771
1.05283
.22654

.56761

.10065
.00004
.99689

.00428

.14051
.00019
.99276

.00915

.18018
.00049
.98677

.01577

.21958
.00099
.97884

.02340

-
.00004

.10076
.00428

.00771

.00019
.14108
.00916

.01752

.00049
.18182
.01561

.03148




U(tp, 360) =

U(t,, 320) =

U(t,, 280) =

n?

U(ty, 240) =

r.96418
.02315
-.29892

.24933

.95028

.02855

-.35047

| 26978

.93395
.03362

-.40248

.28603

.91513
.03813

-.45485

L'29820

.02326
1.07716
.25337

.68251

.02880
1.10648
.27702

.80158

.03412
1.14106
.29797

.92547

.03904
1.18117
.31671

1.05475

.25861
.00170
.96892

.03238

.29718
.00263
.95696

.04235

.33519
.00377
.94294

.05314

.37255
.00511
.92684

.06458

5
.00170
.26526

.03251

1,07244

.00263
.30835

.04264

1.09974]

.00378-T

.35261

.05372

1.13180

.00514
.39825

.06564

1.16882

81



U(tn, 200) =

U(ty, 160) =

U(t,s tg)
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.89380
.04182
-.50739

.30618

.86987
. 04446
-.56010

.30993

.86115
.04503

-.57740

.31006
L

.04336
1.22718
.33355

1,19028

.04693
1,27957
.34893

1.33309

.04792
1.29901
.35385

1.38267

.40916
.00664
.90865

.07651

44491
.00831
.88835

.08876

45637
.00890
.88097

.09284

.00670
.44550

.07831

1.21101

.0084ﬂ
.49459

.09165

1.25862

.00905
51145

.09625

1.27619




APPENDIX II

U(tj)
£y 0.1 U12(107%) U15(107%) U1s
160 .8296 -1.259 -.4212 12.69
200 .8888 -1,548 -.4512 14,64
240 L7704 -1.549 -.3911 13.67
280 . 6480 -1.534 -.3290 12.58
320 .5228 -1,501 -.2654 11.37
36Q .3968 -1.447 -.2015 10.06
400 .2768 -1.367 -.1385 8.65
440 .1556 -1.258 -.0790 7.17
480 .0508 -1.106 -.0258 5.62
520 -.0308 - .904 .0156 4,02
560 -.0748 - .630 .0380 2,41
600 -.0533 - .25 L0271 .81
600% -.0426 - .203 .0216 .81

The elements of U(t.) were determined by multiplying the elements of
U(tn, tj) H(tj) by it-. Except for t = 160 and t = 600, At; = 40 sec
was used. For t = 160, At; = 33.19 sec. and for t = 600, At = 40,68,
For t = 600%, At: = 32,5 sec was used for the first three columns since
their multiplier is a power of AX which, for the guidance function, was
defined to be zero for the last 8.18 seconds., These values should be
used instead of those at 600 in evaluating the integral for the guidance
function.
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160

200

240

280

320

360

400

440

480

520

560

600

600%

-1.585
-1.900
-1.874
-1.834
~-1,775
-1.696
-1.590
-1.452
-1.,272
-1.037
- .723

- .296

- .237

“See Footnote on Page 83.
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U52(1072)

-.895
-.897
-.762
-.630
-.500
-.374
-.254
-.144
-.048

.026

.065

.046

.037

Ups (1074)

.805
.965
.952
.931
.901
.861
.807
.737
. 646
.526
.367

.150

.120

9.014
8.475
6.730
5.168
3.791
2,603
1.610

.821

.242
-.117
-.249

-.147

-.147



t. U31 ﬁ32(10-2) ﬁ33(10-4) 634

D )

160 1.414 -2.676 -.718 26.960
200 1,701 -3.563 -.864 33.676
240 1.666 -3.951 -.846 34,879
280 1.598 -4,390 -.811 36,005
320 1.486 -4.888 -.754 37.036
360 1,319 -5.457 -.670 37.944
400 1,081 -6.117 -.549 38.708
440 .749 -6.898 -.380 39,338
480 .290 -7.816 -.147 39.690
520 -.347 -8.949 176 39.855
560 -1,242 -10,383 .631 39.754
600 -2.,583 -12,286 1,311 39.364
600% -2,064 -9.816 1,048 39.364

“See Footnote on Page 83,
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160

200 -

240

280

320

360

400

440

480

520

560

600

600%

Usy

-3.904
-5.035
-5.396
-5.804
-6.271
-6.815
-7.456
-8,226
-9.173
-10.369
-11.933

-14.318

-11.439

“See Footnote on Page 83.
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0,2(10723)

-2.468
-2.657
-2.442
-2.209
-1.950
-1.656
-1.314
- .906
- .405
.229
1.063

2,216

1.770

U,5(107%)

1.982
2,555
2,739
2.947
3.184
3.460
3,785
4,176
4,657
5.264
6.058

7.270

5.808

Uas

24,868
25,112
21.561
18.121
14,778
11.514
8.312
5.167
2,055
1,018
4,071

7.100

7.100




NUMERICAL RESULTS FROM 5 SECOND INTERVALS

APPENDIX III

Limits “n f* Ft
J J S
Integrand £ £ £,

£q -14,541427 .017713 -14,.523714
fi7 -29,213315 .082930 -29,130385
£,7° -80.125334 .388272 -79.737062
f,1° -251,962610 1.817852 -250,144758
fqt# -857.620677 8.511001 -849,109676
£,7° -3076.064786 39.847657 -3036.217129
£f,78 -11,454,32276 186.56275 -11,267.76001
fo ~.092309 .000024 -.092285
for -.142486 .000113 -.142373
£f,12 -.329282 .000531 -.328751
for3 -.914112 .002487 -.911625
for -2.824898 .011646 -2.813252
£o1° -9.372182 .054524 -9,317658
£,76 -32.711274 .255278 -32.455996
£ .000738 -.000001 .000737
fx7 .001483 -.000004 .001479
f1% . 004068 -.000020 . 004048
f3%3 .012792 -.000092 .012700
fs1% .043541 -.000432 .043109
£57° .156170 -.002023 .154147
£51° .581531 -.009472 .572059
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t t +8 t +3
Limits n n 7\
Integrand f f J
t0 tn tn

g1 .594373 -.023405 .570968
81T 1.824835 -.105580 1.715254
g11° 6.557068 -.513042 6.044026
gq1° 25.223896 -2.402011 22,821885
g1t 100.949256 -11.245976 89.703280
g11° 414,750164 ~52.652539 362.097625
g11° 1736,333387 -246,513923  1489,819464
8o .003170 -.000002 .003168
goT .006143 -.000012 .006131
goT .016530 -.000055 .016475
got .051330 -.000256 .051074
gott .173072 -.001197 .171875
go1” .615988 -.005604 .610384
go1° 2.278515 -.026239 2,252276
g -.000030 .000001 -.000029
g=T -.000093 .000006 -.000087
g51° -.000333 .000026 -.000307
g1 -.001281 .000122 -.001159
gsT* -.005125 .000571 -.004554
ga1” -.021057 .002673 -.018384
g51° -.088153 .012516 -.075637
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= {.349481

[-.008175

1.259049

-.007129

.170980

-.005744

.491843}

-.008092}
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